Adaptive signal processing of surface electromyogram signals
نویسنده
چکیده
Electromyography is the study of muscle function through the electrical signals from the muscles. In surface electromyography the electrical signal is detected on the skin. The signal arises from ion exchanges across the muscle fibres’ membranes. The ion exchange in a motor unit, which is the smallest unit of excitation, produces a waveform that is called an action potential (AP). When a sustained contraction is performed the motor units involved in the contraction will repeatedly produce APs, which result in AP trains. A surface electromyogram (EMG) signal consists of the superposition of many AP trains generated by a large number of active motor units. The aim of this dissertation was to introduce and evaluate new methods for analysis of surface EMG signals. An important aspect is to consider where to place the electrodes during the recording so that the electrodes are not located over the zone where the neuromuscular junctions are located. A method that could estimate the location of this zone was presented in one study. The mean frequency of the EMG signal is often used to estimate muscle fatigue. For signals with low signal-to-noise ratio it is important to limit the integration intervals in the mean frequency calculations. Therefore, a method that improved the maximum frequency estimation was introduced and evaluated in comparison with existing methods. The main methodological work in this dissertation was concentrated on finding single motor unit AP trains from EMG signals recorded with several channels. In two studies single motor unit AP trains were enhanced by using filters that maximised the kurtosis of the output. The first of these studies used a spatial filter, and in the second study the technique was expanded to include filtration in time. The introduction of time filtration resulted in improved performance, and when the method was evaluated in comparison with other methods that use spatial and/or temporal filtration, it gave the best performance among them. In the last study of this dissertation this technique was used to compare AP firing rates and conduction velocities in fibromyalgia patients as compared with a control group of healthy subjects. In conclusion, this dissertation has resulted in new methods that improve the analysis of EMG signals, and as a consequence the methods can simplify physiological research projects.
منابع مشابه
Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملCorrigendum to: “Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique†published in J Biomed Phys Eng 2014; 4(1):31-38
متن کامل
Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
BACKGROUND The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful. Objective : Removing electrocardiogram contamination from electromyogram signals. METHODS In this paper, the clean electromyogram signal, electrocardiogram artifact an...
متن کاملEstimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملSelf-Adaptive Morphological Filter for Noise Reduction of Partial Discharge Signals
Partial Discharge assessment in the insulation of high voltage equipment is one of the most popular approaches for prevention of the insulation breakdown. In the procedure of thisassessment, noise reduction of partial discharge signals to get the original PD signal for accurate evaluation is inevitable. This denoising process shall be carried out such a way that the main features of the p...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کامل